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Introduction 

Optimizing  the flow of aircraft through a  network of bases requires 

some modification of the standani network  flow  algorithms because of 

the special nature of air  transportation.     The   payload   carried by an 

airplane is  a  function of the distance between   refueling stops, as  well 

as  field conditions at the bases; and  in general  the maximum allowable 

payload is not the same on all arcs  of the network.    Thus the shortest 

route through a network is not necessarily  the   route of maximum payload 

flow per hour of flight time,  a trivial example  being  a plane which can 

fly non-stop from origin to destination but only with  zero payload. 

In this  paper we wish to consider two air  network problems analogous 

to the shortest path and  the maximum flow problems.    These are the route 

of maximum payload  flow per hour of flight time and the maximum steady- 

state payload  flow through a network with base  capacity constraints. 

Route of Maximum Payload Flow 

Two numbers are required  to characterize   the flow of payload on 

an arc of an air network.    Referring  to Figure   1, the number above each 

arc 1» the maxlmu- payload,  in thousands of pounds, which can be carried 

on that arc,  the number below the arc is  the  flight time plus refueling 

time for that arc.    In onier to make the algorithm work for the round 

trip case a directed arc  from    T    to    S    must  be added bearing an 

artificial payload of infinity and a  flight time corresponding to the 

shortest return path.     All other arcs  can be  either directed or non- 

directed. 



Figure 1 

We shall show that the route of maximum payload flow can be found by 

repeated application of a shortest route algorithm.    If we let    R-^Rj Rn 

be the set of all roundtrip routes  from    S    to    T    of tne network    J^,    we can 

define a subsequence    ai    in the following way, where the iteration 

begins with    i = 1. 

1. Using the shortest route labeling algorithm find    a^  the 

route of minimum time    T    . 
ai 

2. Find the maximum payload,    L    ,    which can be carried on 
ai 

route    a, ;  this  is  the nünimum of the payload limits  for 

the arcs on that route. 

3. Delete from the network all arcs with payload limit    La      or less. 

^.      Increase    i    by    1    and repeat steps    1    to    3   until no route 

exists. 

This algorithm yields a sequence of flight times    Ta  ,    payloads    L 

and hence payload  flows,    F„    = L    /T    .    The maximum payload  flow for 
ai        ai    ai 

the network is the maximum flow of this sequence. 



For the network In Figure 1 we get the following iterations. 

i •l L 
ai 

T 
al 

F 
ai 

Arcs Deleted 

1. 3DTS 72 21.6 3.33 SD,AT 

2. SÜTS 88 21.8 u.ou BT,SC 

3. SACTS 97 22.5 4.31 CT,SB,AD 

4. SACDTS 99 23-6 A. 19 AC.BCBD 

In this case the algorithm terminates in  four iterations  from which we 

pick out the route of maximum payload flow as    SACTS. 

The number of iterations  cannot exceed the number of arcs of the 

network and is usually much less.     It remains  to be proved  that the 

maximum flow for the routes  examined Is also the maximum flow for all 

the routes. 

Proof;    We remark first that both the sequence of payloads and 

flight times are ordered.    That is,    L      < L and    T      < T 
ai        ai+] al "   ai+l 

for all    1.    Now consider any route    R.     not in the sequence examined. 

We can find an    1    such that    L < L-    < L,    where we define 
Vl        \~   ai. 

L     = 0.    At the 1      stage of the iteration the shortest time was 
ao 

T  i hence T,. > T   and F0 < F . 
ai        ^   al      ^ ~ al 

Capacitated Air Network Flow 

Unlike most network flow problems, capacity constraints of an air 

network are on the noden rather than the arcs. This of course can be 

handled by treating the nodes as dummy arcs with the prescribed capacity 

and allowing the real arcs to have Infinite capacity. However, a more 



difficult aspect of the problem arises  from the  fact that the base 

constraints are on the number of planes which can be served per unit 

of time while the flow being maximized is again payload.       In the following 

paragraphs we describe an algorithm which maximizes payload  flow through 

a network with base capacity constraints on the planes and arc limita- 

tions on the payload per plane. 

Figure 2 shows a simple network with three intermediate bases, where 

the arc numbers are the payload limits on the arcs and  the node numbers 

are the base constraints in planes per unit time.    There are no flight 

times shown because we are dealing here with a steady-stato problem,    rtor 

the same reason the return flight is not important.    What we are maxi- 

mizing is the steady-state flow of payload into   T   when the capacity 

of the network is saturated. 

Figure 2 



The problem can be formulated as a linear program by enumerating 

all the routes and determining for each route o a column vector Pa 

whose ith component is 1 if base i  is used and 0 otherwise. The 

cost component is L ,  the maximum payluad which can be carried 

on route a. This incidence matrix for nodes versus routes for the net- 

work In Figure 2 is shown in Table 1.  It is given here merely to help 
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Table I 

identify the routes and is not essential to the calculation. Solving this 

problem, in general, by any of the usual linear programming procedures 

is impractical,as the number of routes grows very rapidly with the number 

of bases so that even the enumeration of the routes becomes a formidable 

task for any but the most trivial practical problem. 

The procedure we shall describe here is very similar to the technique 

used by Ford and Pulkerson for multl-commodity network flows '5] and 

consists of the revised simplex procedure modified by using an auxiliary 

shortest route algorithm to determine the new vector to be brought into 

the basis at each stage.  In this way we need to calculate only a very 

small part of the relative cost row to determine the pivot column. 



At each stage of the iteration we are given a current basis  B, 

whose order Is the number of Intermediate nodes of the network, and its 

inverse.  The initial basis can be the set of slack variables associated 

with unused node capacity; or if the one-stop routes are part of the 

system, the vectors associated with these routes can be used to form 

the Initial basis, as In the example shown in Table I.  In either case, 

then, the initial basis is the Identity matrix and the algorithm proceeds 

as follows. 

1. Calculate IT,  the vector of simplex multipliers (prices) for 

the current basis. 

2. Assign the prices to their corresponding nodes (i.e., the 

dummy arcs) and zero to all other arcs in the original net- 

work, and call this price network 1^. Then find a sequence 

of minimum cost routes according to the following sub-algorithm. 

Initiating the iteration with 1=1. 

a. Find the least cost route Oj through the cost network 

N,  and the payload limit L   for the corresponding 
1 »i 

route through the original network. 

b. Delete from the cost network all "res with payload limits 

not exceeding L  . Call this network N1+1. 
i 

c. Increasing i by 1, repeat steps a and b until 

N    becomes disconnected and no route exists. 

3.  If for any route e^ in step 2 we have Sa - 1^ < 0, where 

S   is the sum of the costs along route a,,  then Pa  can 
ai i 

be brought into the basis in the usual way to produce a new 

current basis. 



U.       With  this  new basis,   repeat steps  1 to 3.    When    S       - L      ^ 0 
al al 

for all    a. ,     the  flow is maximal. 

Example 

Let us  trsfp through the steps of the algorithm with  the example 

illustrated  in  Figure  2.    We begin with an initial basis    B       formed 

by  the vectors associated with the one-stop routes    SAT,SBT,  and SOT. 

From the network we  find  the vector of payload limits    f = (LsAT'^SBT^SCp 

= (7i8»9)>    and  the steps of the algorithm are as  follows. 

1. TT = YB"
1
 =  (7,8,9) 

2. The cost network becomes 

and  the sub-iteration is as  follows. 

i ai s \ Qi ai 
Arcs Deleted 

l SAT 7 7 0 AT 

2 SBT 8 8 0 SB 

3 SCT 9 9 0 SC 

i SAHT 15 U 1 HI 

5 SAGT 16 18 -2 AC 

6 SABCT 24 ?'• 4 BC 



3.      Bringing  the vector corresponding to    SACT    into the basis 

(this corresponds  to    P,    in Table I),  yields  the new basis 

B = (Pc,P_,P^)    and the new inverse 

,-1 

10    0 

10   10 

10    1 

The new cost vector is    y =  (18,8,9). 

On the second iteration we get the following. 

1. » ■ Yß'1 = (9,8,9) 

2. The coat network and sub-iteration are 

1 

2 

3 

A 

5 

SET 

SOT 

SABT 

SACT 

SABOT 

a 

11 

18 

26 

•l 
a1    a1 

Arcs Deleted 

8 0 SB .AT 

9 0 BC 

U 3 BT 

18 0 AC 

20 6 BC 

3.  Since S  - L  > 0 for all a.  the flow is maximal. 
a1   a1 

After calculating the new b vector, E = B~ b, we find the 

maximum payload flow is 104 units achieved by 3 planes on route SACT, 

A  on SBT, and 2 on SCT. 



Since the numbers  In the column labeled    S       - L        are actually 
al ai 

entries  in the relative cost  row in the simplex procedure,  we know the 

flow is  optimal provided all  these elements are non-negative.    But we 

have examined only  five of them and  it remains  to be  proved  that all the 

other entries are also non-negative. 

Proof!     We remark again,  as  in the preceding section,   that the payload 

limits  are ordered.     That is,     L      < L for all     i.     Then for any 
ai i+1 

other route    R.     not in  the sequence of    ■-     we can find an    i    such that 

L < L      < L    ,    where we define    L      =0.    But at the 1      stage of the 
ai-i      Rk- ai ao 
iteration the route chosen was the least cost route. Hence Sa < SR » 

and therefore S  - L  < S- - L- . Thus if all the entries In the 
Qi   ai ~ Rk   \ 

column labeled S  - L   are non-negative, we know that all the entries 
al   ai 

in the relative cost row are also non-negative and the flow is optimal. 

Computational Experience 

Neither of the two algorithms described here has been programmed 

for machine computation because the problems for which they were designed 

cuuld easily be solved by hand calculation. For the first algorithm 

the largest problem Involved 23 nodes and was solved in less than an 

hour. The largest problem for the second algorithm involved 11 nodes; 

but even a network of only 11 nodes has over a million different routes 

through it. The optimum set of routes was determined in about two hours 

and required from five to ten iterations depending on the data. The 

sub-iteration usually required from 8 to 13 steps before the network 

became disconnected. For hand calculation it was found easier to pivot 

as soon as the first negative value of S  - L   was found rather than 
ai   0i 



10 

calculating all S - L   and choosing the moat negative. This may 
ai  al 

not be true for machine calculation and would depend on the relative 

efficiency of the two iterations. 
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